Author Affiliations
Abstract
1 Tianjin Key Laboratory of Integrated Opto-electronics Technologies and Devices, School of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin, China
2 Department of Physics, University of Basel, Basel, Switzerland
3 State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, China
Epitaxial quantum dots formed by III–V compound semiconductors are excellent sources of non-classical photons, creating single photons and entangled multi-photon states on demand. Their semiconductor nature allows for a straightforward combination with mature integrated photonic technologies, leading to novel functional devices at the single-photon level. Integrating a quantum dot into a carefully engineered photonic cavity enables control of the radiative decay rate using the Purcell effect and the realization of photon–photon nonlinear gates. In this review, we introduce the basis of epitaxial quantum dots and discuss their applications as non-classical light sources. We highlight two interfaces—one between flying photons and the quantum-dot dipole, and the other between the photons and the spin. We summarize the recent development of integrated photonics and reconfigurable devices that have been combined with quantum dots or are suitable for hybrid integration. Finally, we provide an outlook of employing quantum-dot platforms for practical applications in large-scale quantum computation and the quantum Internet.
quantum dots single-photon source quantum Internet quantum computing 
Photonics Insights
2023, 1(2): R07
Author Affiliations
Abstract
1 State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering: International Research Center for Advanced Photonics, Zhejiang University, Hangzhou 310027, China
2 Research Center of Laser Fusion, China Academy of Engineering Physics, No. 64 Mianshan Road, Mianyang 621000, China
3 Jiaxing Key Laboratory of Photonic Sensing & Intelligent Imaging, Jiaxing, 314000, China
4 Intelligent Optics & Photonics Research Center, Jiaxing Research Institute Zhejiang University, Jiaxing 314000, China
Surface defects (SDs) and subsurface defects (SSDs) are the key factors decreasing the laser damage threshold of optics. Due to the spatially stacked structure, accurately detecting and distinguishing them has become a major challenge. Herein a detection method for SDs and SSDs with multisensor image fusion is proposed. The optics is illuminated by a laser under dark field condition, and the defects are excited to generate scattering and fluorescence lights, which are received by two image sensors in a wide-field microscope. With the modified algorithms of image registration and feature-level fusion, different types of defects are identified and extracted from the scattering and fluorescence images. Experiments show that two imaging modes can be realized simultaneously by multisensor image fusion, and HF etching verifies that SDs and SSDs of polished optics can be accurately distinguished. This method provides a more targeted reference for the evaluation and control of the defects of optics, and exhibits potential in the application of material surface research.
PhotoniX
2022, 3(1): 6
Zhuang Ma 1Xiaoyan Zhou 1,2,3,*Lin Zhang 1,2,4,*
Author Affiliations
Abstract
1 Tianjin Key Laboratory of Integrated Opto-electronics Technologies and Devices, School of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
2 Peng Cheng Laboratory, Shenzhen 518038, China
3 e-mail:
4 e-mail:
The optical coupled resonant system consisting of an integrated resonator with gain and a resonator with loss provides an excellent platform to create exceptional points (EPs) in non-Hermitian systems. Most previous studies have focused on the striking intensity feature of EPs, but its phase response is seldom investigated. In this work, we present a thorough study on the phase response of an EP system. Intriguingly, the phase response exhibits distinct behavior depending on the ordering of the ring resonators: when the input light in a bus waveguide is coupled directly or indirectly to the ring with a gain, the phase response is featured by nonmonotonic transition and 2π monotonic transition, respectively. We also prove that the newly identified phase features are theoretically guaranteed. These phase responses produce unique group delays that have never been found in other coupled resonant systems. The results deepen our understanding on EPs in non-Hermitian systems and are potentially useful for practical applications exploiting phase features.
Photonics Research
2022, 10(10): 2374
周晓妍 1,2李波 1,2李宇怀 1,2曹原 1,2[ ... ]彭承志 1,2
作者单位
摘要
1 中国科学技术大学, 安徽 合肥 230026
2 中国科学院量子信息与量子科技创新研究院, 上海 201315

随着量子信息科学的迅速发展,以光子为物理载体的量子纠缠源已成为量子非定域性检验、量子通信、量子计算以及量子精密测量等领域必不可少的资源和重要技术手段。利用非线性介质中的自发参量下转换过程,从早期的β相偏硼酸钡晶体到后来的基于准相位匹配的周期性极化晶体等,双光子极化纠缠源凭借其在亮度和品质方面的优势得到了快速发展,这为基于卫星平台的广域量子通信和量子物理的基础检验提供了可能。从基本原理出发,系统介绍了近年来面向空间平台应用的量子纠缠源的发展和最新成果,特别是以“墨子号”量子科学实验卫星为代表的星载量子纠缠源载荷;此外,对国际上近几年关于星载量子纠缠源的进展以及未来发展趋势也进行了较为全面的介绍和分析。

量子光学 量子通信 量子纠缠 量子密钥分发 量子纠缠分发 量子隐形传态 
光学学报
2022, 42(3): 0327008
作者单位
摘要
1 中国工程物理研究院 激光聚变研究中心,四川 绵阳 621900;西南科技大学 材料科学与工程学院,四川 绵阳 621010
2 中国工程物理研究院 激光聚变研究中心,四川 绵阳 621900
3 西南科技大学 材料科学与工程学院,四川 绵阳 621010
掺镱光纤是高功率激光器的核心材料,但在高能射线辐照后其应用性能会显著下降,因此有必要对掺镱光纤材料在辐照环境下的性能变化进行深入研究。采用改进型化学气相沉积法结合稀土螯合物掺杂制备了系列光纤预制棒及光纤,测试了光纤在不同剂量下射线辐照前后的高功率输出性能,以及光纤预制棒辐照前后的吸收光谱及镱离子荧光寿命。结果表明:小剂量辐照后掺镱光纤的高功率输出显著下降,通过预制棒吸收光谱可看出主要是因为伽马辐照后使掺镱光纤材料中Al的相关缺陷浓度增多,在可见光区域吸收损耗增加。Ce离子的掺杂通过缓减辐致铝氧空位中心(Al-OHC)色心缺陷的增加,减少Yb离子荧光寿命的下降,可在一定程度上抑制高功率掺镱光纤的辐致暗化。
掺镱光纤 辐照 色心 吸收光谱 荧光寿命 Yb-doped fiber radiation color center absorption spectra fluorescence lifetime 
强激光与粒子束
2020, 32(8): 081003
李天松 1,2,**高翔 1,2,*周晓燕 1阳荣凯 2
作者单位
摘要
1 桂林电子科技大学信息与通信学院, 广西 桂林 541004
2 广西精密导航技术与应用重点实验室, 广西 桂林 541004
结合Sahu-Shanmugam和Fournier-Forand体积散射函数,使用蒙特卡罗方法建立水下激光传输信道模型,利用该模型分析了接收端的光束扩展特性。研究了三种典型水域下,接收视场角和接收面直径对光束功率密度的影响,以及不同接收距离下光束功率密度的分布特性。结果表明:随着水域散射系数的增大和传输距离的增加,会加剧光束分布扩展;随着接收面直径的增大,光束功率密度的变化趋势逐渐减小,光束功率密度幅值随着接收视场角的增大而增加;随着传输距离的增加,光束功率密度分布逐渐离散。这些结果为水下定位或水下接收机等设计提供参考。
海洋光学 体积散射函数 蒙特卡罗法 海洋信道 光子统计 
激光与光电子学进展
2020, 57(3): 030103
作者单位
摘要
1 浙江大学光电科学与工程学院现代光学仪器国家重点实验室, 浙江 杭州 310027
2 中国工程物理研究院激光聚变研究中心, 四川 绵阳 621900
熔融石英光学元件的亚表面缺陷直接影响着其成像质量及激光损伤阈值等指标。相比缺陷的二维截面大小以及深度信息,亚表面缺陷三维轮廓及缺陷体积的定量检测结果可以用来更准确地评估熔融石英光学元件的加工质量。结合共聚焦显微镜的成像原理,使用共聚焦显微镜进行了熔融石英样品层析扫描实验。通过对亚表面缺陷图像特点的分析,提出了适用熔融石英元件亚表面缺陷的三维重建算法。提出的算法在亚表面缺陷重建效率与精度上均优于其他三维重建方法。根据重建后缺陷的统计结果,定量获得了熔融石英样品亚表面缺陷的完整三维信息。
材料 熔融石英 亚表面缺陷 三维重建 激光共聚焦显微镜 
光学学报
2020, 40(2): 0216001
作者单位
摘要
1 中国工程物理研究院激光聚变研究中心, 四川 绵阳 621900
2 电子科技大学光电科学与工程学院, 四川 成都 610054
光致暗化效应是高功率掺镱光纤激光器稳定性、可靠性及寿命的重要影响因素。对掺镱光纤光致暗化性能进行精确表征和物理诊断是理解光致暗化产生机理及建立光致暗化消除技术的前提和基础。介绍了表征掺镱光纤光致暗化性能的主要物理参量,综述了掺镱光纤光致暗化性能的物理诊断方法,分析了不同方法的优缺点及适用范围,阐述了影响光致暗化性能的关键因素,并对未来掺镱光纤光致暗化性能物理诊断研究方向进行了展望。
激光器 掺镱光纤 光致暗化性能 表征参量 物理诊断方法 
激光与光电子学进展
2019, 56(10): 100002
Author Affiliations
Abstract
We present the birefringence measurements induced in K9 specimen by cracks produced by 1 064-nm Nd:YAG laser. The birefringence data are converted into units of stress, permitting the estimation of residual stress near cracks. The laser parameters and characterization of the optical material influence the value of residual stress. Residual stress in optical materials can affect fracture; thus, this factor should be considered in any formulation that involves enhanced damage resistance of optical components used in laser-induced damage experiments. The probability of the initial damage and the direction of the energy dissipation in cracks determine the residual stress distribution. Moreover, thermal-stress coupling enlarges the asymmetry of residual stress distribution. Therefore, the physical mechanism of asymmetric damage is useful for understanding the nature of optical materials under high-power laser irradiation.
140.3330 Laser damage 160.6030 Silica 140.3390 Laser materials processing 140.3470 Lasers, carbon dioxide 
Chinese Optics Letters
2013, 11(4): 041402

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!